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Abstract— Robots are expected to operate autonomously in
increasingly complex scenarios such as crowded streets or heavy
traffic situations. Perceiving the dynamics of moving objects
in the environment is crucial for safe and smart navigation
and therefore a key enabler for autonomous driving. In this
paper we present a novel model-free approach for detecting
and tracking dynamic objects in 3D LiDAR scans obtained by a
moving sensor. Our method only relies on motion cues and does
not require any prior information about the objects. We sequen-
tially detect multiple motions in the scene and segment objects
using a Bayesian approach. For robustly tracking objects, we
utilize their estimated motion models. We present extensive
quantitative results based on publicly available datasets and
show that our approach outperforms the state of the art.

I. INTRODUCTION

One of the major goals in the area of mobile robotics is to
develop robot systems that can robustly navigate to accom-
plish different tasks such as surveillance and transportation.
As the environment in which a robot is expected to operate
typically cannot be assumed to be static, it is necessary for
the robot to properly deal with the dynamic aspects of the
environment. For example, a self driving car trying to cross
an intersection in heavy traffic needs to be able to detect
the individual dynamic objects in its vicinity such as cars,
bikes, trucks and pedestrians. Furthermore it is necessary to
estimate their individual motion characteristics to be able
to navigate in a safe and efficient way. Understanding the
dynamic nature of the environment offers many advantages.
First, removing dynamic objects from a map can help to more
accurately estimate the pose of a robot. Second, predicting
the location of dynamic objects facilitates motion and path
planning. Third, estimating the dynamics of objects can also
help to infer semantic information.

In this work we propose a model-free approach for de-
tecting and tracking dynamic objects in urban environments.
Traditionally, model-free approaches rely on detecting dy-
namic objects by analyzing the perceived change of the
environment caused by motion. Instead of detecting changes,
we segment distinct objects using motion cues. Change
detection either requires a prior map or an online mapping
technique. In contrast, our approach does not require a map.
We begin to reason about objects at point level by matching
corresponding points in consecutive scans. This information
is used to detect different motions in the scene. We recover
the local static structure and multiple dynamic objects only
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Fig. 1. A 3D LiDAR scan recorded by a car in a heavy traffic situation.
Our approach estimates the motion of the car relative to the static structure,
shown in blue, and the dynamic objects in its environment, shown in
different colors. The arrows indicate the direction of the estimated motion.

based on the detected motion. Since we estimate motion
models, we can reason about the dynamics of an detected
object to efficiently track it. Tracking objects is a challenging
problem since the sensor motion and the motion of objects
lead to frequent occlusions, making data association a hard
problem. Our framework leverages the estimated motion
models for associating objects in consecutive frames.

The main contribution of our work is a novel approach
for detecting and tracking dynamic objects in 3D LiDAR
scans. We sequentially use RANSAC [4] to estimate motion
models and propose a Bayesian approach to segment multiple
objects. Our method only relies on motion cues and does not
require any prior information about the object. Fig. 1 shows
multiple objects of different types, shapes, and sizes detected
and tracked by our approach.

II. RELATED WORK

The problem of detecting and tracking multiple mov-
ing objects has been studied actively for decades [2], [3].
Proposed methods to solve this problem can be broadly
subdivided into model-free [6], [9], [16] and model-based
[8], [11], [10] approaches.

In model-based approaches, objects are detected on the
basis of known model information. These approaches are pre-
ferred when the object to be detected is known and therefore
can be modeled a priori. In [8], an approach for detection
and tracking of cars is presented. For people, Spinello et
al. proposed a learning based approach [11]. They subdivide
a human structure into multiple layers based on height and
then learn a classifier for each layer. In [10], Shackleton et



al. outline another method for detecting and tracking people.
The main disadvantage of model-based approaches is that
they do not generalize to objects of different categories.
To overcome this disadvantage, we propose a model-free
approach for detecting generic objects.

Model-free methods are mainly based on motion cues and
enable detection and tracking of objects of arbitrary shape
and size. Since these approaches require motion information,
they are unable to detect objects which can potentially
move but are static in the current observation. Model-free
approaches are generally based on building a static map
of the scene and using this map information for detecting
dynamic objects. In [9], Pomerleau et al. make a visibility
assumption that the scene behind the object is observed, if
an object moves. To leverage over this information, they
compare an incoming scan with a global map and detect
dynamic objects. Since they only use depth as cue for change
detection, there method might fail if the motion between
scans is small.

Kaestner et al. [6] propose a generative Bayesian approach
for detecting dynamic objects. For tracking they use an
approach based on the Kalman filter. They show results for a
static sensor but as mentioned in Pomerleau et al. [9] there is
no straightforward extension of their approach to a moving
sensor. Recently, Wang et al. [16] proposed a model-free
approach for detection and tracking in 2D LiDAR data. Using
a joint state representation, they estimate the state of the
sensor, a local static map, and the state of the dynamic object.
Every incoming scan is associated with a local static map
and with dynamic objects. For tracking, they use a constant
velocity motion model. While we have similar objectives, a
comparison to our method is infeasible since our approach
works on 3D instead of 2D LiDAR data.

Azim et al. [1] represent the environment using an octree-
based occupancy grid and determine inconsistencies between
the map and incoming scans to detect dynamic objects.
In contrast, we do not build a map, but similar to [16]
we only store local static information. For tracking they
use Global Nearest Neighbor for associating tracks between
consecutive frames. Tipaldi et al. [13] outline an approach for
detecting and estimating motion using CRF for 2D LiDAR
data. Van De Ven et al. [15] extended their approach by
integrating the CRF based method with scan matching using
a graphical model.

Moosmann et al. [7] use a segmentation method based
on local convexity for detecting object hypotheses. They
combine ICP and a Kalman filter for tracking and a clas-
sification method for managing tracks. Unlike them, we do
not use a shape prior for detection but only rely on motion
information. We compare our approach with their method
and show superior performance. To best of our knowledge,
this is one of the initial contribution for model-free detection
and tracking in 3D LiDAR data.

III. FRAMEWORK OVERVIEW

The goal of our approach is to segment and track dynamic
objects in LiDAR scans obtained by a mobile robot. Our
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Fig. 2. Our framework consists of modules for motion detection, tracking
the sensor, and tracking dynamic objects. Point sets are indicated with P,
motions models with T .

framework shown in Fig. 2 consists of modules for detecting
motion, tracking the sensor and tracking dynamic objects. A
LiDAR scan is defined as a set of points:

P = {pk | pk ∈ R3,k = 1, . . . ,K} (1)

At every time step t, the scans Pt , Pt−1, and the motion
models Tt−1 ∈ SE(3) are provided to the framework. In our
notation Tt describes the motion from Pt−1 to Pt . The points
in Pt−1 are classified as either static, dynamic, or unknown
point, i.e.,:

Pt−1 = PS
t−1tPD

t−1tPU
t−1 (2)

First, the sensor tracking module classifies a subset of
points PS

t ⊂ Pt as static and estimates the sensor motion T S
t

relative to these points. Second, the object tracking module
classifies a subset of points PD

t ⊂ (Pt \ PS
t ) as dynamic,

where PD
t = PD1

t t . . . t PDN
t consists of multiple disjoint

point sets assigned to different dynamic objects. The module
also estimates motion models T D

t = {T D1
t , . . . ,T DN

t } for these
objects. Third, all points Pt \ (PS

t t PD
t ) not classified by

the tracking modules are provided to the detection module,
which either adds them to the static point set, creates a new
dynamic object, or assigns them to the unknown set PU

t . For
the first scan all points are unknown, i.e. P1 = PU

1 .

IV. MOTION-BASED DETECTION

We segment dynamic objects using only motion cues. The
motion of points between two consecutive LiDAR scans
is mainly caused by the motion of the sensor and the
motion of dynamic objects. We assume that the motion of
these objects is rigid. The following subsection describes
how we estimate motion models for the sensor and the
dynamic objects. Subsequently, we explain the proposed
Bayesian approach which calculates the probability of a
point to follow a given motion model. Finally, we introduce
our data association between consecutive scans and outline
the method for detecting multiple motions. To simplify the
notation in this section we assume without loss of generality
that no points are classified already, i.e., Pt−1 = PU

t−1.



A. Motion Models

We use RANSAC to estimate motion models Tt ∈ SE(3)
for the sensor and the dynamic objects. To find initial
point correspondences between the two scans, we uniformly
sample keypoints Ft−1 ⊂ Pt−1, match their SHOT descriptors
[14] against all points in Pt , and pick the matches with
minimum descriptor distance. We discard correspondences
with a distance greater than a threshold, which is determined
by an assumed motion limit and the sensor frame rate.
RANSAC estimates the motion model Tt consented by the
majority of the remaining correspondences. We define the
inlier point set It−1 ⊂ Ft−1 as all points in Pt−1 that are part
of an inlier correspondence.

So far, Tt is only related to the motion of points in It−1,
which is a sparse subset of all the points in Pt−1. Therefore
it is necessary to infer all non-inlier points which also follow
Tt . In the next subsection we propose an approach to tackle
this problem.

B. Bayesian Approach

We propose a Bayesian approach to determine the proba-
bility of each point pk ∈Pt−1 to follow a given motion model.
By this means we expand the sparse subset It−1 to all points
in scan Pt−1. We represent the consent of pk with Tt as a
Bernoulli distributed random variable hk, where hk = 1 means
that pk follows the motion model Tt . The objective of the
proposed Bayesian approach is to calculate the probability
p(hk | Pt , p̂k), where p̂k ∈ P̂t−1 is the point pk transformed
by Tt . We apply Bayes’ rule and assume independence of hk
and p̂k to calculate this probability:

p(hk | Pt , p̂k) =
p(Pt | hk, p̂k)p(hk, p̂k)

p(Pt , p̂k)
(3)

=
p(Pt | hk, p̂k)p(hk)p(p̂k)

p(Pt | p̂k)p(p̂k)
(4)

∝ p(Pt | hk, p̂k)p(hk) (5)

In the following subsections we describe how we model
the likelihood p(Pt | hk, p̂k) and the prior p(hk) in (5). The
proposed Bayesian approach relies on the fact that p̂k is well
aligned with points in Pt , if hk = 1. Therefore the depth, i.e.
the distance to the sensor, of p̂k and the neighboring points
in Pt should be similar. This is also true for local geometry.
Furthermore, we impose by regularization that pk is likely
to follow the same motion as points in its vicinity.

1) Depth: The depth of the point p is denoted z. Since the
likelihood of hk actually only depends on the neighborhood
Nk ⊂ Pt of p̂k and we assume independence between the
points pl ∈ Nk we can model the likelihood in (5) based on
the depth alignment [5] as

p(Pt | hk, p̂k) = ∏
pl∈Nk

p(zl | hk, ẑk) (6)

Similar to [9], we define Nk as the conical frustum around
p̂k. It better captures the disparity caused by misalignment
in comparison to a spherical neighborhood.

To model the likelihood p(zl | hk, ẑk), we use the beam-
based sensor model from [12]. For hk = 1 it is a linear
combination of four distributions:

p(zk | hk = 1, ẑk) =


whit

wshort
wmax
wrand


T 

phit
pshort
pmax
prand

 (7)

where whit +wshort +wmax +wrand = 1 and phit models the
probability of hitting the expected surface, pshort of hitting
an unexpected obstacle in front, pmax of a maximum range
measurement, and prand of an unexplainable measurement.

phit =

{
ηN (zk; ẑk,σ

2
hit) if 0≤ zk ≤ zmax

0 otherwise
(8)

pshort =

{
ηλshorte−λshort zk if 0≤ zk ≤ ẑk

0 otherwise
(9)

pmax =

{
1 if z = zmax

0 otherwise
(10)

prand =

{
1

zmax
if 0≤ zk ≤ zmax

0 otherwise
(11)

For hk = 0 the likelihood (7) changes to a mixture of three
distributions:

p(zk | hk = 0, ẑk) =

wshort
wmax
wrand

T pshort
pmax
prand

 (12)

where the weights are adapted and pshort in (9) is cut
off at the maximum range zmax instead at the expected
measurement ẑk.

2) Local Geometry: We measure consistency of local
geometry by calculating the cosine similarity ckl between
the SHOT descriptors fk and fl :

ckl =
fk · fl

‖ fk‖‖ fl‖
(13)

To incorporate the consistency of local geometry into the
likelihood, we change (6) by weighting the individual factors
with ckl :

p(Pt | hk, p̂k) = ∏
pl∈Nk

ckl p(zl | hk, ẑk) (14)

3) Regularization: Since pk likely follows the same mo-
tion as points in its vicinity, we impose a prior p(hk) in (5).
We model this prior by utilizing the information provided by
RANSAC, namely if points in the neighborhood of pk are
in the inlier point set It−1 ⊂ Ft−1 or not. The neighborhood
is calculated by drawing a sphere around pk:

NF
k = {pl ∈ Ft−1 | ‖pk− pl‖ < 3σw} (15)

Points pk that have many inlier and few outlier points in
their vicinity should have a high prior to consent with Tt and



vice versa. We realize these characteristics by computing a
weighted average:

p0(hk) =

{
1 if pk ∈ It−1

0 otherwise
(16)

p(hk) =
∑pl∈NF

k
wkl p0(hk)

∑pl∈NF
k

wkl
(17)

Since we want closer points to have a higher influence on
the prior, we use a Gaussian for the weighting:

wkl =
1√

2πσ2
w

exp−‖pk− pl‖2

2σ2
w

(18)

The proposed Bayesian approach is used to calculate the
probability of points in Pt−1 to follow the motion model
Tt . The next subsection describes how we associate Tt with
points in the current scan Pt .

C. Data Association

To classify points in the current scan Pt , we need to
associate them to the corresponding motion models Tt . Due
to sensor motion and noise, every scan consists of varying
points which are sampled from surfaces of the real struc-
ture. Therefore, establishing point-to-point correspondences
between Pt−1 and Pt is not feasible.

To realize the data association, we first identify points
p∗k ∈ P∗t−1 ⊂ Pt−1 with a probability p(hk = 1 | Pt , p̂k) > ζ ,
i.e. points that have a high probability to follow the motion
model Tt . Second, we determine the union of neighborhoods
N by drawing spheres around all points p̂∗k ∈ P̂∗t−1. Third, we
declare points pl ∈Pt to follow the motion Tt if they lie inside
N. In this way we classify points in Pt according to their
motion and assign them to the static point set PS

t or to a point
set of a dynamic object PDi

t . We apply Euclidean clustering
to handle multiple objects following the same motion.

D. Multiple Motions

We use RANSAC to detect motion in the scene (IV-A).
To identify all points in scan Pt that follow a motion model
Tt , we use the Bayesian approach (IV-B) and apply the data
association (IV-C). To detect multiple motions, we apply this
pipeline sequentially. The detected Tt always stems from
the motion which is consented by the majority of points.
Therefore we remove all these points from Pt−1 and Pt to
subsequently determine the next motion model.

Since we assume that most points originate from static
structure, the first Tt we detect is the sensor motion T S

t . We
create a new dynamic object if

‖T Di
t −T S

t ‖F > ε (19)

where T Di
t is its estimated motion model, ‖·‖F the Frobenius

norm, and ε a threshold that determines the minimum motion
of an object to be considered as dynamic. If (19) is false,
we add points to PS

t .

V. TRACKING THE SENSOR AND DYNAMIC OBJECTS

Tracking is concerned with propagating information over
time, in our case from LiDAR scan Pt−1 to Pt . This involves
updating the motion models of the sensor and the dynamic
objects from Tt−1 to Tt . Furthermore, the points in Pt have
to be classified as static or assigned to a specific dynamic
object. In the following subsection we describe how we track
the motion of the sensor and of dynamic objects.

A. Sensor Motion

We first update the motion model of the sensor from T S
t−1

to T S
t . To get an initial estimate how static points have

moved, we apply the previous motion model:

P̂S
t−1 = T S

t−1 ∗PS
t−1 (20)

Based on this estimate, we find correspondences between all
points p̂k ∈ P̂S

t−1 and points in Pt using nearest neighbor in
Euclidean space. We apply RANSAC to estimate the motion
T̂ S

t and update the motion model of the sensor:

T S
t = T̂ S

t ∗T S
t−1 (21)

To classify points in Pt as static, we first use the pro-
posed Bayesian approach (IV-B). Based on the probabilities
p(hk | Pt , p̂k), we identify points that were static in Pt−1 but
are dynamic or disappeared in Pt , i.e. have a low probability.
Points with a high probability to consent with the sensor
motion T S

t are used in the data association (IV-C) to assign
points to PS

t ⊂ Pt .

B. Dynamic Objects

The tracking of dynamic objects relies on a similar con-
cepts as the sensor tracking. However, updating the motion
model of an object from T Di

t−1 to T Di
t is realized differently.

First, we again apply the previous motion model to get an
initial estimate where the object has moved:

P̂Di
t−1 = T Di

t−1 ∗PDi
t−1 (22)

We determine a neighborhood N ⊂ Pt as it is done in (IV-C).
This provides a coarse prior information, where to search for
correspondences, namely between points in PDi

t−1 and N. We
find correspondences by matching SHOT descriptors, which
are subsequently used by RANSAC to estimate the motion
model T Di

t . To assign object points to PDi
t ⊂ Pt , we choose

the same approach as for the sensor tracking.
We create a tracklet for every segmented dynamic object,

which is defined by its motion model T Di
t and point set PDi

t .
Tracklets tracked for more than NT scans are promoted as
tracks. We make this distinction to avoid false positives. A
track is lost when an object is no longer in the sensors field
of view or when it is entirely occluded, i.e. PDi

t = /0. To tackle
temporary occlusions we predict a bounding box based on
the objects last observation. We recover a track when points
reappear inside the tracks bounding box.



Fig. 3. LiDAR scan of sequence B at t = 26.2s. Ground truth is indicated by black bounding boxes. Structure classified as static is shown in blue, dynamic
objects in other colors. Arrows display the translational part of the estimated motion models.

VI. RESULTS

We evaluate our approach on two datasets made available
by [7]. Both scan sequences A and B are collected in
non-flat urban environments using a Velodyne HDL-64E
LiDAR sensor at 10Hz and are 38 and 50 seconds long,
respectively. The ground truth velocity of the sensor was
obtained using DGPS/IMU and is also available for one
other car. To conduct an extensive quantitative analysis, we
manually labeled all dynamic objects apart from pedestrians
and compared the results of our approach against the Moving
Object Mapping (MOM) method presented by Moosmann et
al. [7]. For all experiments presented in this section, we chose
ζ = 0.95, ε = 0.2, and NT = 8.

Fig. 3 shows a snapshot of sequence B taken at t = 26.2s.
Since we remove the ground plane before we provide a scan
to the framework, ground points are not classified. It can be
seen that we are able to segment and track many objects
of various types, e.g. cars, trucks, and bikes. This is one
major advantage of our approach compared to model-based
methods. Admittedly, our approach does not work well for
pedestrians. This is mainly for the reason that they move
slowly and our detection method only relies on motion cues.
Furthermore, the assumption of rigid body motion does not
hold. Due to their comparatively small size, pedestrians may
also consist of very few points, especially if they are far
away from the sensor. Since pedestrians are not labeled in the
ground truth, we ensure not to count them as false positives
in the analysis.

TABLE I
CLASSIFICATION OF DYNAMIC OBJECTS

Precision Recall F1 ObjRcl
Sequence A

Ours 62.41 91.33 70.76 81.77
MOM 14.89 72.91 22.02 30.90

Sequence B
Ours 72.57 78.18 73.05 74.08

MOM 29.85 89.01 41.81 79.91

For a quantitative evaluation of our approach, we use the
ground truth bounding boxes of the dynamic objects. For
each scan we compute precision and recall, where preci-
sion is defined as the ratio between the number of correct
detections and detections and recall as the ratio between
the number of correct detections and bounding boxes. We
average precision and recall over all scans of the sequence
and compute the F1 score. We also define an object recall
(ObjRcl) that measures the ratio between the number of
scans in which an object is detected and scans in which it
is actually there according to the ground truth. We average
this value over all objects. In contrast to recall, every object
equally contributes to the object recall, independent on the
number of scans in which the object is present.

Table I reports results for our approach and compares
them. In sequence A we clearly outperform MOM which
suffers from a high number of false positives. Its different
recall and object recall values are caused by the dominance of
one object, that in contrast to others, is present over the whole
sequence and can be tracked. In sequence B our approach
reaches significantly better precision with a slightly worse
recall. In both sequences we achieve better F1 scores.

Fig. 4 illustrates the tracks estimated by our approach
in comparison to the ground truth for sequence B. We are
able to segment almost all objects and track them robustly.
Since our approach requires a minimum motion to consider
an object as dynamic, we can only detect objects as soon
as they have reached a certain velocity. Our loss of recall
is primarily due to the late detection of the objects 10-18
and the few undetected objects. These cases were recorded
at an intersection and include slow moving objects either
approaching or leaving the intersection. Fig. 4 also depicts
cases where objects were temporarily occluded. Since we
always recover from occlusions if we detect the object, we
claim that our approach is robust against occlusions.

To further compare our approach, we also conduct the
tracking quality experiment presented by Moosmann et
al. [7]. The objective of this experiment is to estimate the
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Fig. 4. Tracks for sequence B. Ground truth is depicted in black, estimated
tracks are colored green. Gaps in the ground truth are caused by occlusions.

absolute speed of another car. Therefore we evaluate the
estimation of the sensor motion and the relative motion
between sensor and dynamic object. Fig. 5 shows that we can
robustly track both in sequence A. The peak in the sensor
motion is caused by a corrupted LiDAR scan. In Table II
we report the median, mean, standard deviation, and RMSE
generated without the outer 10%-quantiles for the sensor
motion in both sequences. The table also shows results for
the dynamic objects tracking in comparison to the results
reported in Moosmann et al. [7]. It can be seen that our
approach outperforms MOM. To provide a more informative
measure we also report the RMSE for our approach.

TABLE II
ESTIMATION OF SENSOR AND DYNAMIC OBJECT MOTION

[GENERATED WITHOUT OUTER 10%-QUANTILES]

Median Mean Std.-Dev. RMSE
Sensor Speed Error

Ours A -0.19 -0.06 ±0.57 0.57
Ours B -0.09 -0.08 ±0.26 0.30

Object Speed Error
Ours -0.34 -0.32 ±0.68 0.75

MOM -0.84 -0.69 ±1.16 -

VII. CONCLUSIONS

In this paper we present a novel approach to detect and
track dynamic objects. We detect motions between consec-
utive scans by sequentially using RANSAC and propose a
Bayesian approach to segment and track multiple objects.
Our method is model-free, i.e., it does not require any prior
information about the objects. We analyze our approach on
two publicly available data sequences and compare it with an
existing method. For both sequences, our approach achieves a
better F1 score. Furthermore, we show that we track the speed
of the sensor and of another object with a higher accuracy.
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