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Abstract—In this paper, we describe a novel approach to
construct textured 3D environment models in a hierarchical
fashion based on local surface patches. Compared to previous
approaches, the hierarchy enables our method to represent §
the environment with differently sized surface patches. The
reconstruction scheme starts at a coarse resolution with large
patches and in an iterative fashion uses the reconstruction erro
to guide the decision as to whether the resolution should be
refined. This leads to variable resolution models that represent
areas with few variations at low resolution and areas with = large areas in the left picture correspond to the regibas are

large .varlatlons at high relsolutlon.. In addition, we compactly represented at the highest level using the large patches.giéen areas
describe local surface attributes via sparse coding based on an ge represented with smaller patches at level two and the #lea is

overcomplete dictionary. In this way, we additionally exploit represented with small high resolution patches. The otheurgi shows
similarities in structure and texture, which leads to compact the corresponding model with a size of 343kB compared to 4.7 M@
models. We learn the dictionary directly from the input data  original point cloud.

and independently for every level in the hierarchy in an ) . . . ) . L
unsupervised fashion. Practical experiments with large-scale With high resolution in areas with high variation and low
datasets demonstrate that our method compares favorably resolution in areas with minor variations. Fig. 1 shows an

with two state-of-the-art techniques while being comparable example obtained with our approach. The red surfaces in the
In accuracy. left picture correspond to the largest surface patches lead t
l. INTRODUCTION blue surfaces to _the smaII_est patc_hes. The right picture/sho
. ) o . the full model with RGB information.

There is an increasing interest in accurate and texturedyg construct such hierarchical models in a greedy fashion
3D models of real-world environments or objects as they A%y starting at the highest level of our hierarchy with the
relevant for various applications including surveillaneavi- largest surface descriptions and use the standard deviatio
ronment_al monitoring e.md.virtual reality. Also in the coxtte depth and RGB-space to decide as to whether a local
of robotics many applications rely on accurate 3D modelg,face should be used at the current level. The idea is it to
like navigation, object recognition, and mobile manipwlal jescrine everything that cannot be accurately represaited
Recently, dense 3D reconstruction with RGBD cameras h@se cyrrent level at a higher resolution. To guarantee emeer
become popular due to the availability and low costs ofye gescribe all remaining data at the lowest level. Once we

such cameras. However, especially large-scale envirosmeg, .y the level of detail for all data, we apply K-SVD to learn
or high resolution models ask for compact representatiéns g gictionary for every level in the hierarchy and calculate a

dense 3D models. _ _ sparse code for every local surface.
In this paper, we propose a hierarchical method to con-

struct compact and textured 3D models of an environment [l. RELATED WORK
from RGBD data. We describe local surface attributes with There exists a wide variety of different representations fo

sparse codes that refer to an overcomplete dictionaryspatextured 3D data. Depending on the desired application the
Coding [12] is a flexible and adaptive toolkit to compactlyindividual approaches either focus on accuracy, compastne
encode similarities in large data collections. A sparseecotr rendering performance. Recent developments in simulta-
describes data with up to € N dictionary entries and we neous localization and mapping (SLAM) and the availability
use it to encode local depth and texture data. In this way wg& RGBD-cameras made it possible to obtain large colored
exploit the redundancy in typical human made environmenigetric models. Whereas a major advantage of colored point-
to build highly compact models. By doing this in a hier-ciouds lies in their accuracy, their drawback lies in their
archical fashion with local surface descriptions of didfietr storage requiremenL since we need to store every Sing|e
sizes and resolutions, we are able to capture similarities @ata item in both 3D and RGB-space. Therefore, RGBD-
different scales. This leads to even more compact modelgised SLAM systems often use only a subset of features
) ) internally [7].

Lab. Universty of Freiburg. Lisfeng 80 is with the. Intel Sace and _ Most recent GPU driven RGBD-SLAM systems utilize
Technology Center for Pervasive Computing (ISTC-PC). Dietex is with ~ the Truncated Signed Distance Function (TSDF) [2] as
the Robotics and State Estimation Lab, University of WasioingThis work representation. The main advantages of this approach are
L”S?_gj‘gg%'g_;“lj‘ggdpf{ tg)e, tig g’;?ﬂaﬁﬁ'g‘;zf ng:g:tﬂdu\;ngr;? the smoothness and the resolution of the estimated surface.
number EXC 1086 and by the ISTC-PC. However, this approach requires to maintain a cubic voxel

Fig. 1. This figure illustrates our hierarchical surfaceadiggion scheme.



grid in memory, which restricts the size of such a grid
to fit into GPU memory. Recent extensions use either a
moving TSDF volume representation [17] and maintain data
outside of the GPU or use local TSDF volumes or patches
to represent only local aspects of the environment [6]. &inc
TSDF volumes have a limited compactness and require ray
casting for visualization, the volumes are typically caned

into meshes for that purpose. Meshes, however, are a highly
accurate representation but lack compactness and further-
more cannot be easily updated.

Recently, Maet al. [10] presented a planar simplification
scheme for large meshes to drastically reduce the number
of vertices on planar surfaces. In contrast to our work
the quadtree-based triangulation scheme produces a mesh c) d)
without overlap, while our method produces overlappingsig. 2. This figure shows a colored point cloud with a greenectiiat will
surfaces. On the other side it reduces only the structurbg represented by a patch (a), the depth description (bobe description
information and does not exploit repetitve structures of?) 214 e bIed () The lgnt green reas i (») and (zepor to
textures. It furthermore is limited to planar surfaces.

Another compact volumetric representation for 3D dat&lote that we need more than one surface patch to describe a
are octrees. Octrees represent occupancy and impliciigy frvolume with this strategy. One major challenge in this con-
space in a hierarchical grid structure. Fairfiedtl al. [4] text is that the scale at which structure or texture reagpear
used octrees in the context of SLAM for underwater vecan be arbitrary. Therefore it seems desirable to introduce
hicles. Recently Wurnet al. [18] introduced an open source surface patches of different sizes to capture similarigies
implementation of octrees called Octomap which can stodfferent scales.
additional RGB information. In the context of compression Similar to SCSM we encode local colored 3D data at a
Kammerlet al. [9] used octrees to compactly transmit pointwell-defined location as set of 2D images for three channels,
cloud streams by sending only the differences in successiwhich are depth, RGB, and bitmask (see Fig. 2). The grey
frames. Especially for large voxel sizes, octrees are cempavalue on the depth channel (b) corresponds to the weighted
but suffer from discretization errors due to the alignment tmean of the distance to the surface in direction of the narmal
the voxel structure. On the other hand, they are accurate fdfe compute a RGB value for the texture channel (c) as the
small voxel size models but not compact anymore. weighted mean of the RGB values that fall into a pixel. Note

In our previous work on Sparse Coded Surface Modelat we can compute a local range image and a corresponding
(SCSM)[14] we introduced a surface-patch-based represdexture at every location in an unorganized point cloud. In
tation that uses Sparse Coding to compactly describe tieentrast to SCSM, we use the error model described in [15]
surface attributes in both, 3D and RGB space. Sparse Cdg-weight the error according to the error of the maximum
ing [12] is a machine learning technique used for signaiange of the sensor. The bitmask (d) encodes which pixel
approximation [13], image denoising [8], [3] and for leargi  have a valid value. In this way, we can encode surfaces that
features [1], [19]. In this paper we present a hierarchica@re smaller than the given patch size and also deal with
extension that better adapts to the level of detail need@gclusions (see Fig. 2). In our current implementation we
to accurately describe local surfaces. This extensionsleagtart with a maximum patch size and a minimum resolution at
to even more compact models. Additionally we present te highest level and halve the size in every patch dimension
novel keypoint method driven by maximizing coverage ané@nd double the resolution for every following level.
alignment to substantially reduce the number of patches The main intuition of the hierarchical modeling is that
needed to represent the input data. Furthermore, we irdeoduve try to explain everything on the current level and use
a distance-based weighting scheme to compute weightedverage and error distributions to guide the decision as to
means for the surface descriptions. This approach has beghether a surface is well represented or should be repre-
applied successfully in the past especially to TSDF-basexnted at a lower level and higher resolution. Starting with
SLAM methods [11], [17], [6]. As a result, the representedh pre-registered set of colored point clouds as input data we
surfaces suffer less from noisy far range measurements lafild a model using large patches with low resolution to
RGBD cameras. represent the full data set. If a patch does not cover more
than 90% we can easily describe it at the next lower level.
The standard deviatiop. of a pixel in a patch gives us

The main idea of our method is to represent colored 3Ehe information how good the patch resolution can represent
data with a set of surface patches and to encode every tbe data at the current level of the hierarchy. We introduce
these local surfaces using Sparse Coding based on a refereacmaximum standard variatiopZ?th and pr9%, for both
dictionary. In this way, we can exploit the repetition ofchannels to control how accurate a model will represent
structures and textures and build highly compact modeldetails. If the standard deviation of a pixel is above one of
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Possible ways to define the quality of patch locations
are the area they cover, the error introduced by the patch
discretization, and the error of the reconstruction based o
our dictionary. Since we compute the dictionary in a later
step, we could only use the reconstruction error by either
introducing a two pass encoding, which results in betteztpat
locations in the second pass, or using a general pre-cothpute
Fig. 3. This figure illustrates the greedy-based hieramthimodeling dictionary for every patch size and resolution. Therefore,
o s SEos o s bk e s ane 1€ €1 only on coverage and discretization error. Since
frilrgst Igvel of the hierar(?hy. These points are the input fer tlext level. we reject pixels in the 2D projection that introduce high

discretization errors, this also influences the area cdvere
these thresholds we set the bitmask of this pixeDtand by a patch. Therefore, we sub-sampleto a resolution
postpone this part of the surface to be represented at tB®se to the resolution of a patch pixel and calculate the
next level. Fig. 3 illustrates the procedure. The left pietu approximate coverage value fé by computing surface
shows the input point cloud and the right picture shows thgatches and counting the number of valid pixels. We use
point cloud of all remaining points after modeling the firstthe coverage value to guide our greedy selection of possible
level. The latter corresponds to the input for the next levelocations and start with the location that corresponds ¢o th
At the lowest level we accept all patches independent @fest coverage value. Once selected, we update the coverage
the computed standard deviation to ensure that the modeldgsthe neighborhood of a location according to the area the
complete and represents all data. corresponding patch covers. To compute a coordinate frame

We define a Hierarchical Sparse Coded Surface Modef a patch we compute the normal of the range data in the
(HSCSM) asM(H, Dt Db T) with the hierarchy de- patch space and chose and y-axes from the two global
scription . = {hi,...,hy)} consisting of a tupleéh; = coordinate axes that have the larger angle to the computed
(psj,pr;) for the j-th level which defines the patch sizenormal and make them orthogonal to the normal. In this
ps; and patch resolutiopr;, reference dictionaries for both way, we constrain the cubical surface patches in theiriootat
channels, D" and D™", and a scene descriptidh =  around the normal according to a global coordinate frame.
{i1,...,ijz}. The reference dictionary of every channel hagsiven constrained orientations for surface patches we can
entries that correspond to a particular level of the hi¢marc extend the greedy search to first select a maximum coverage
plerth — (DI D™} that we construct by con- |ocation and then search in the neighborhood along the
catenating the learned dictionaries for every level. Allies  definedz, y-directions for possible candidate locations which
di"™ of a depth dictionanyD """ = {d{**"", ... d2*™"}  are well-aligned to our cubical patch structure. As a result
with n = \D;Tle”tﬂ have the same number of rows andof this alignment the average distance between neighboring
columns as the depth channels of the surface patches sfiface patch locations is increased compared to distance-
their corresponding level. Currently we us the same dienly based methods while still covering the same surface.
mensions for all levels, but this is not mandatory. Ever
ij = (Tj,c™ ¢ b, level;) stores a transformatioh;,

)é. Dictionary Learning with wK-SVD
Vv v

consisting of the 3D pose and the orientation for the surface The extracted surface patch8sontain a lot of redundant
patch, one sparse code for the depf th and one for the information on RGB and depth channels. Thus, we intend to

RGB channebfgb, a bitmaskb; that is0 for undefined pixels compute a sparse approximation to find a compact represen-
and 1 for defined pixels and the index of its leviekel;. In tation of the data. LetS be the data matrix that contains

the following we will discuss how we compute the position€Very si as i-th column vector. The idea of K-SVD is to
for our surface patches and will give an overview of thd€&m an overcomplete dictionafy and a sparse description
dictionary learning scheme we apply. X to approximates. We can formulate this as a minimization

problem using the following equation:

A. Surface Patch Locations ) ) _
min [|[S — (W © (DX))||7 st. Vi|zl, <k (1)

To fully represent a set of input point clou@ we need
to find locations for the surface patches such that all datdere, | Al denotes the Frobenius normy) denotes the
is covered by the patches. In general, finding the minimuralement-wise matrix multiplication, ankl is the maximum
number of subsets that contain all elements 7fis a number of nonzero entries for each columnthat approxi-
set covering problem known to be NP-complete [5]. Fomates a corresponding surface pas¢hs Dx;.
SCSM we used a spatial subsampling strategy to uniformly To deal with undefined values we use weighted K-SVD
distribute the patch positions on the data as approximateK-SVD) which applies a binary weighting matri¥” that
solution. Since we have different patch sizes for everylleveontains al for data pixels that were actually observed
of our hierarchy, we cannot follow the same strategy herand 0 otherwise. This information is represented in the
Therefore, we propose to solve this by applying a greedyitmask channel of the patches. In this way we ignore the
algorithm that searches for the best patch locations atyevereconstruction results for undefined values and focus the
level starting with the largest patches. reconstruction accuracy on the observed values. Undefined



pixels store a value of zero ifi and by multiplyingl¥ in an
element-wise fashion we ensure that the reconstructeévalu
of undefined pixels are ignored during the optimization. A
more detailed description of wK-SVD and a comparison to
regular K-SVD can be found here [14] give.

To learn our reference dictionary we apply wK-SVD
independently on every level for the depth channel and the
RGB channel and concatenate the dictionaries per channel
and update the indices of the sparse codes accordinglye Sinc
the impact of errors on the resulting model scales with the
size of a patch, we require a low reconstruction error for the
higher levels. We start with a maximum number of allowed
dictionary entries or the maximum number of data entries for
the current level. Since wK-SVD reports back the number

of unused entries, we crop the dictionary afterwards anl—dlg. 4. This Figure shows the data sets used for comparisén@dtomap

proceed with the next level. and Sparse Coded Surface Models. The top picture shows awieweof
We can decode a modéH (H, D4erth D% T) back into a RGBD data set acquired in a typical corridor environment $acond

a point cloud if needed. This can be done by iterating througHcture shows the publicly available fri/room data set.

all elements ofZ and decoding thg-th element with and variedp’ 9 . We chose large values far,,,.. to reduce
& depth _ pdepth | depth ) the impact of the dependency between the two parameters.
! / Fig. 5 shows the resulting plots. The left plot shows the area
With c;.“pth = [\, .. .,)\f’] this can be rewritten as covered for every level of the hierarchy and the resulting

. 1, qdepth N qdepth RMSE for the corresponding model. For smaff?! the
sj=Ajdy TR A Ay ) models are fully covered with small patches of the lowest

Note that the sparse codg is a sparse vector with only € evel. By increasingoji" the contribution in coverage is

N nonzero entries. We app|y the same scheme for decod|ﬁ6|ﬁed to hlgher levels. This drastica”y reduces the nemb

the color channel and project the joint information into £t patches needed to describe the surface and results in more

colored 3D point cloud according to the scale informatiolfOmpact models. The right plot shows a similar evaluation

for all values defined irb;. Finally, we applyT; to put the for o}, Again, the area covered with larger patches of

highlighted the most interesting parameter ranges witgtd li
IV. EXPERIMENTS gray box. In this parameter range the file size is reduced

The interesting quantities for our models are accuracground25% while only moderately increasing the error.
compactness and the time needed to compute a model. )
As measure of compactness, we take the file size of tffe Comparison to Octomap and SCSM
resulting models. As measure of accuracy, we compute theln this section, we compare our proposed method to
Root Mean Squared Error (RMSE) between the input poidctomap [18] and the non-hierarchical SCSM. Therefore
clouds P and the point cloud reconstruction of our modelwe applied our method on three different data sets, the
P. Obviously, this depends on the sensor noise and tlexample scene illustrated in Fig. 3, a SLAM soluficand
discretization scheme we apply in our models. Still, thesord the publicly available fr1/room data set [16], both shown in
of magnitude of the error is a good indicator for the accuracyig. 4. Table | gives an overview of the relevant statistics
We compute the error for every point 7 by searching for for Octomap, SCSM and the proposed method. Note that
the nearest neighbor i® and vice-versa. In this way, the we chose the minimum resolution according to the average
error measures inliers and outliers. distance between sensor and surfaces in the data set and to
avoid over-fitting to sensor noise. On the three data sets,
our method never extracted patches on levebr higher.

Crucial questions are how much we gain from introducingrherefore, we provide timings for the larger data sets only
multiple levels with different patch sizes and if the maximu ith 3 levels.

standard deviation is a good criterion to guide our decision For the corridor SLAM data set, we applied our method
what to model on a certain level. Therefore, we conducted(g the accumulated point cloud and built a model with

corresponding experiment on the small RGB-D frame showss 824 surface patches on three hierarchy levais ( 801

in Fig. 3. We chose to use 4 levels with patch sizes of 34 772). As can be seen, the resulting models have no
24/12/6/3 cm and corresponding resolutionsi/12/6/3  natches on the highest level. The full process of creatieg th
mm. In the first setting, we varied the maximum allowe‘£1odel took 19 min including the dictionary learning with a

standard deviation of the depth chanpéf?i" for a fixed gictionary size of 1,000 for the depth channel @nd00 for
maximum standard deviation of the RGB chanpgl?, =

100. In the second setting, we used a fi§?t" = 1.0 Courtesy of Peter Henry

A. Influence of Maximum Standard Deviation
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Fig. 5. Impact of the maximum standard deviation paramq&é,f ;ih and p{;ff{z on our hierarchical model. The left plot shows the area caléve

every level of the hierarchy and the resulting RMSE. For smallles ofp;i,fgih our model is fully covered with small patches of the lowest llefay
increasingp‘f,fg;h we shift the contribution in coverage to higher levels. Tieduces the number of patches needed to describe the suFfaeeight
plot shows a similar evaluation fqr;?f{x. Again, the area covered with larger patches at higher develreases while relaxing this parameter. The most

interesting parameter ranges are marked with light gray bdrethis area the file size is reduced B§% with only a moderate increase in error.

[ Data set [ method [ dict. (D/RGB) | patch size | res.(cm) [ input | result | RMSE (D/RGB)[ time |
Scene Fig. 3 Octomap -/ - - 0.3 4.7MB 918 kB 0.0014m /8.2 | 0.25s
Scene Fig. 3 SCSM 100 / 200 0.03m 0.3 47MB | 423.9kB | 0.0016m / 14.3 7s
Scene Fig. 3 HSCSM 100 / 200 0.03m 24/12/0.6/0.3] 47MB | 343.6kB | 0.0017m/15.2 8s
RGBD Corridor | Octomap -/ - - 2 3.35GB | 445MB | 0.016m/ 25.1 56s
RGBD Corridor | SCSM 100 / 500 0.2m 2 3.35GB | 10.2MB | 0.017m/19.9 | 8min
RGBD Corridor | HSCSM 1000 /3000 | 0.8/0.4/0.2m 8/4/2 3.35GB | 7.8MB 0.013m /21.7 | 19min
frl/room Octomap -/ - - 1 2.7GB 45MB 0.006m /39.6 | 2min
frl/room SCSM 500 / 3500 0.05m 1 27GB | 8.1MB 0.005m /29.9 | 31 min
frl/room HSCSM 500 /3500 | 0.2/0.1/0.05 m 4712171 27GB | 7.2MB 0.005m / 30.0 | 36 min

TABLE |

EXPERIMENTAL EVALUATION FOR EACH DATA SET AND METHOD. THE DICTIONARY SIZE AND RMSEERRORS ARE SPLIT INTO DEPTH ANCRGB. WE
MEASURED THE TIMINGS ON A STANDARD DESKTOPCPUWITH 3 GHz.

the RGB channel. The model created with our hierarchical V. CONCLUSIONS
method outperforms Octomap in terms of accuracy and also| this paper, we presented a novel approach to con-

visually as can be seen in Fig. 6 (b) and (d). Regardingiryct textured 3D models using a hierarchy of local sur-
runtime, Octomap is fastest with less than a minute byhce patches. Our method employs differently sized surface
introduces a higher error in both depth and RGB spacgatches thus leading to more compact models. Furthermore,
Compared to SCSM, the hierarchical model2i&% more oy method exploits similarities in structure and textuge b
compact and more accurate in the depth channel. The ering Sparse Coding to describe surface attributes. Insear
in RGB space is slightly higher. This is due to the fact thafhe required dictionaries during the model creation prsces
encoding errors in larger patches have a bigger impact on thean unsupervised fashion. Practical experiments caaigd

overall error calculation. Therefore we had to increase thgjth data sets of different scale demonstrate that our naetho
dictionary sizes compared to the non hierarchical method.compares favorably with two state-of-the-art techniques.
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