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Fig. 5. SLAM experiment using a graph-based SLAM algorithm. The picture shows that the robot was able to maintain a consistent
map up to the third session (left). At that time, a first data association error was introduced by the front-end (middle). At the end of the
day, the map is inconsistent (right), due to several data association errors introduced. Blue lines represent the pose graph and the colored
area the current laser measurement. Data association hypotheses that passed the consistency test and that were sent to SCGP (Olson
et al., 2005) are shown as green lines whereas the ones that did not are displayed in red.

6.1. Comparison with state-of-the-art SLAM
techniques

The aim of this experiment is to demonstrate that the appli-
cation of standard SLAM approaches to the lifelong local-
ization problem is suboptimal and that changes in the envi-
ronment can jeopardize state-of-the-art SLAM algorithms
due to false positives in data association. Note that these
false positives are systematic and cannot be avoided by tun-
ing the parameters of the SLAM front-end, since they are
due to changes in the environment. We will also show that
multiple hypothesis SLAM algorithms like that of Grisetti
et al. (2007) lead to inconsistent maps if standard occu-
pancy grids are used. This is mainly due to the lack of
plasticity of the representation.

In the experiment we employed both a graph-based
and an RBPF-based SLAM algorithm. The graph-based
approach has been chosen for two reasons. The first rea-
son is that graph-based algorithms are considered the state
of the art for solving SLAM. The second reason is that
this experiment provides an indirect comparison with the
Dynamic Pose Graph (Walcott-Bryant et al., 2012), since
it relies on scan matching and graph-based optimization.
We chose to use an RBPF-based algorithm in our tests to
demonstrate that multi-hypothesis SLAM algorithms per-
form better than the maximum likelihood ones in the pres-
ence of changes. We believe this is due to the fact that they
rely on a lazy mechanism for data association, where wrong
associations can be rejected after observing more data.

For the graph-based algorithm we chose HOG-
Man (Grisetti et al., 2010b) as SLAM back-end and we fol-
low the approach of Olson (2008) for the front-end. While
the back-end was chosen for its on-line nature, we selected
the front-end because of its robustness to outliers and high
precision, since potential data association candidates are
first obtained by means of matching the relative scans and

then fed into a consistency check using single cluster graph
partitioning (SCGP) (Olson et al., 2005). They both rep-
resent the state of the art for on-line maximum likelihood
mapping and data association.

With respect to the RBPF-based algorithm, we chose
GMapping (Grisetti et al., 2007). This algorithm represents
a robust RBPF SLAM solution and is widely used in sev-
eral research centers and companies. For the experiment,
we concatenated the 12 sessions collected at the parking
lot into one session. The final and starting pose of the
robot were manually aligned to preserve continuity in the
robot path. Both SLAM algorithms were then tested on the
resulting data as it would have been a single robot run.

Figure 5 shows the performance of the graph-based algo-
rithm. The algorithm is able to correctly track the robot
for the first three sessions and estimates the correct tra-
jectory and a consistent map of the environment (see the
leftmost figure). This is also due to the fact that during
the first two sessions, the environment did not change sub-
stantially, since few cars were parked there before 9 am.
However, around 9 am most of the people came to work and
the parking lot configuration changed. In the middle figure,
we see that the front-end mistakenly added a loop clos-
ing transformation between two robot poses, leading to an
inconsistent map. Note that this is not necessarily an error
of the front end. The two observations were really almost
identical, since a car was parked on a spot that was free in
the previous sessions and the system matched it with the
car parked beside it. Finally, the rightmost figure shows the
robot trajectory and the map at the end of the day (6 pm),
when all data has been processed. As we can see, the map
is highly inconsistent and the robot path wrong.

Please note that this performance violates one of the
assumption made in DPG-SLAM (Walcott-Bryant et al.,
2012), i.e. that the trajectory estimation can be done using
graph-based SLAM algorithms in combination with scan
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matching for detecting loop closing edges (more details
on this assumption are provided in Walcott-Bryant’s PhD
thesis (Walcott, 2011, Section 4.1.3)).

This behavior of the system convinced us that to bet-
ter address this data association problem a multi hypothe-
ses approach was needed. To this end, we performed the
same experiment using GMapping (Grisetti et al., 2007).
By tuning the number of particles, we were able to obtain
a consistent map of the environment at the end. However,
two limitations are still present. First, the algorithm was
slower than the graph-based one and certainly not adapted
to on-line navigation. This is mainly due to the number of
particles needed and the continuous map updates. Note that
this also imposes memory limitations, due to each hypoth-
esis carrying its own map. Second, the update rate of the
map strongly depended on how often a certain cell has been
already observed.

These phenomena are, however, not present when using
the dynamic occupancy grid. Figure 6 shows the difference
between the occupancy grid and the dynamic occupancy
grid used in this paper. The top row shows the actual config-
uration of the environment, the middle row the result using
the dynamic occupancy grid and the bottom row using stan-
dard occupancy grids. Both maps are computed using the
robot trajectory estimated by the RBPF algorithm. In the
left column of the figure we see the result on the third ses-
sion (9 am) and in the right column the results on the last
session (6 pm). As one can see already at 9 am, the occu-
pancy grid is not able to correctly represent the environment
everywhere, but only in places where the cars were already
present in the previous sessions (the parking lot is usually
filled starting from the bottom left corner, since it is closest
to the entrance). The phenomenon is even greater towards
the end of the day, once many people had left. Then, the
occupancy grid still believed that the parking lot was almost
full, without removing the cars that had left from the map.

6.2. Localization experiment

In order to assess the performance of the localization
approach, we compared it to state-of-the-art localization
approaches both in a global localization and a position
tracking setting. For each data set, we compared our
approach (RBPF-HMM), MCL using the standard occu-
pancy grid (MCL-S), MCL using the ground-truth map for
that specific data set (MCL-GT), and MCL using the tem-
porary maps (Meyer-Delius et al., 2010) (MCL-TM). In
global localization, MCL-TM relies on MCL-S before con-
vergence, hence we aggregate the two results in Figure 7
and Table 1.

For all the aforementioned approaches, we used the
Blake–Zisserman (Blake and Zisserman, 1987) robust func-
tion to compute the likelihood. This choice is motivated by
robustness to outliers, hence to objects with high dynam-
ics. The Blake–Zisserman function is a combination of a

Fig. 6. SLAM experiment using an RBPF-based SLAM algo-
rithm. Shown are the ground-truth maps (top), the dynamic occu-
pancy grids (middle), and standard occupancy grids (bottom). The
left column shows the session recorded at 9 am and the right
column the one at 6 pm.

Gaussian distribution and a uniform distribution with one
parameter that define the crossover point.

We performed 100 runs for each data set, where we ran-
domly sampled the initial pose of the robot. In order to
obtain a fair comparison, the same seed has been used
to generate the initial pose, as well as to perform all the
random sampling processes for each approach. All the
approaches have been initialized with 10, 000 particles for
global localization and 500 particles for pose tracking. They
all used the same set of parameters as well: an occupancy
threshold of 0.6 and a crossover parameter of 1 m for the
Blake–Zisserman. To verify convergence, we consider the
determinant of the covariance matrix for the translation and
rotation part. If the translation determinant is kept below 0.5
and the angle determinant below 0.3 for a distance of at least
0.2 m, we assume the filter to have converged to a solution.
We then compare the estimated pose with the ground-truth
and if this distance is below 1 m and 0.5 rad we consider the
run a success, otherwise it is a failure.

The static maps used for MCL-GT have been computed
using the corrected log files from the SLAM algorithm and
rendering the points into an occupancy grid. The static map
for MCL-S has been computed using all the datasets as they
would be a unique run of the SLAM algorithm over the
whole day. The dynamic map has been estimated using a
leave-one-out cross validation over the corrected log files.
For each test run, all other runs were used to learn the tran-
sitions of the dynamic map. In this way the data on which
the RBPF-HMM algorithm was run was never used for the
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Table 1. Global localization experiment.

Data set MCL-GT RBPF-HMM MCL-S / MCL-TM

Success Error2 σ 2 Success Error2 σ 2 Success Error2 σ 2

01 100% 0.21 0.36 50% 0.26 0.36 50% 0.26 0.18
02 100% 0.19 0.29 40% 0.10 0.08 33% 0.13 0.09
03 100% 0.13 0.19 80% 0.10 0.29 52% 0.19 0.17
04 100% 0.04 0.03 60% 0.08 0.14 53% 0.15 0.19
05 100% 0.07 0.18 54% 0.07 0.09 35% 0.15 0.18
06 100% 0.02 0.01 87% 0.02 0.02 45% 0.06 0.02
07 100% 0.06 0.08 59% 0.12 0.22 43% 0.14 0.20
08 100% 0.05 0.10 71% 0.03 0.02 28% 0.03 0.01
09 100% 0.02 0.01 53% 0.12 0.22 31% 0.06 0.02
10 100% 0.14 0.28 62% 0.13 0.31 34% 0.30 1.01
11 100% 0.11 0.11 38% 0.15 0.21 26% 0.24 0.29
12 100% 0.19 0.32 20% 0.16 0.14 22% 0.27 0.38
Average 100% 0.11 0.19 52% 0.11 0.18 36% 0.17 0.22

Fig. 7. Success rate for the global localization experiment. The
graph shows the success rate of the different algorithms. The
MCL-GT algorithm is used as baseline and thus has a 100% suc-
cess rate. As can be seen our approach (RBPF-HMM) outperforms
MCL-S/MCL-TM.

Fig. 8. Prior map used in the localization experiments.

learning part. The RBPF-HMM has been initialized using
the static map as the MCL-S as a prior map m0, for a fair
comparison. Figure 8 shows the prior map m0.

The results of the global localization experiment are
shown in Figure 7 and Table 1. The figure shows the suc-
cess rate of the global localization, as the percentage of
time the filter converged to the true pose. The table shows
the numerical values of the success rate and the residual
squared error, with respective variance, after convergence.
The success rate is reported relative to the result of MCL
on the ground-truth map, in order to have a measure inde-
pendent of the complexity of the environment. The results
show that our approach outperforms the standard MCL on
static maps both in terms of convergence rate and accuracy
in localization.

Figure 9 and Table 2 show the results for the position
tracking experiment, where the filter is initialized around
the true pose and keeps tracking the robot. As before, the
figure shows the failure rate, i.e. the percentage of time the
robot got lost during tracking, and the table the numerical
values of the failure rate as well as the residual squared
error in the case the tracking was successful. The results of
this experiment show that the performance of our approach
in position tracking is almost equivalent to MCL with the
ground-truth maps, with a failure rate of only 2%.

The comparison with the temporary map
approach (Meyer-Delius et al., 2010) reveals two important
messages. The first message is that the proposed approach
is always more precise in terms of residual error. This
comes as no surprise, since the estimation of the local
surrounding is in some sense constrained by the map geom-
etry and static objects can only appear in places where
they have been seen during learning. On the contrary,
the temporary maps get initialized with the current pose
estimate of the robot and introduce a bias in the estimation
that is almost impossible to remove. The second message
is that the proposed approach is more robust to the changes
and to the initialization. This is evident from the failure
rate, where the temporary maps approach is almost always
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Table 2. Position tracking experiment.

Data set MCL-GT RBPF-HMM MCL-S MCL-TM

Failure Error2 σ 2 Failure Error2 σ 2 Failure Error2 σ 2 Failure Error2 σ 2

01 0% 0.04 0.01 3% 0.09 0.03 5% 0.18 0.07 0% 0.25 0.16
02 0% 0.03 0.01 4% 0.08 0.05 24% 0.18 0.10 0% 0.16 0.04
03 0% 0.04 0.01 2% 0.05 0.04 10% 0.09 0.04 12% 0.63 0.45
04 0% 0.02 0.01 0% 0.04 0.01 10% 0.08 0.02 29% 0.63 0.51
05 0% 0.02 0.01 3% 0.03 0.04 13% 0.06 0.02 1% 0.51 0.31
06 0% 0.02 0.01 2% 0.02 0.01 26% 0.09 0.12 0% 0.21 0.05
07 0% 0.02 0.01 0% 0.03 0.01 34% 0.07 0.01 1% 0.44 0.24
08 0% 0.02 0.01 2% 0.02 0.01 35% 0.09 0.15 35% 0.59 0.56
09 0% 0.02 0.01 4% 0.03 0.01 37% 0.07 0.16 4% 0.49 0.31
10 0% 0.02 0.01 0% 0.03 0.01 36% 0.09 0.10 0% 0.32 0.12
11 0% 0.03 0.01 1% 0.05 0.02 42% 0.10 0.05 1% 0.47 0.28
12 0% 0.03 0.01 5% 0.06 0.01 44% 0.15 0.20 0% 0.23 0.04
Average 0% 0.03 0.01 2% 0.04 0.02 27% 0.10 0.08 7% 0.41 0.25

Fig. 9. Failure rate for the position tracking experiment. The
graph shows the failure rate of the different algorithms. The MCL-
GT algorithm is used as baseline and thus has a 0% failure rate.
As can be seen our approach (RBPF-HMM) outperform MCL-S
and MCL-TM.

on par with the RBPF-HMM but in three cases, and in one
case is even worse than standard MCL. The problem is that
if the temporary map is created from a wrong position,
there is no possibility to recover, the worst case being when
the observations matching the prior map are considered as
outliers.

In terms of runtime and size of the local map, we experi-
enced an average mixing time of k = 10 and an average size
of the local map of about 250 cells. The original map size is
369x456 pixels with a resolution of 0.1 m. A standard RBPF
with an occupancy grid map needs about 16GB of mem-
ory in the global localization and little less than 1GB for
position tracking. Our technique, instead, only uses about
24MB for global localization and 5MB for position track-
ing, resulting in a memory saving of about three orders of
magnitude.

A frame to frame comparison between the proposed
approach and standard MCL is shown in Figure 10 and
in Extension 1. Both algorithms have the same parameters
and the same seed for the random number generator. As it

can be seen, MCL converges too fast on a wrong solution,
believing that the measurements coming from parked cars
(not present in the a priori map) have been generated by the
wall on the bottom right (frame 8). The proposed approach,
on the other hand, has a slower convergence rate due to
the uncertainty in the map estimate. After a few frames
(frame 12) it finally converges to the right position. In
the last frame one can see the updated map, which better
reflects the current configuration of the environment.

Both experiments show two important aspects of the
problem and of the solution adopted. The first aspect is
that the problem is much more complex than global local-
ization since the search space is bigger and deciding if a
measurement is an outlier or is caused by a change of the
configuration is not a trivial task. Furthermore, analyzing
the performance results in position tracking, we see that if
the filter is initialized close to the correct solution, i.e. the
search is reduced to the correct basis of attraction, it is able
to estimate the correct configuration. The second aspect is
how the algorithm scales with different amounts of change
in the environment configuration. In the first four sessions,
the parking lot is almost empty, and it becomes quite full in
the last ones. This is evident, when analyzing the results of
MCL on the static maps, since the performance gets worse
with an increasing amount of change. On the other hand, the
performance of our approach is less sensitive to the amount
of change in case of global localization and is even inde-
pendent of that in case of position tracking, as can be seen
from the two tables.

6.3. Comparison with outlier rejection
approaches

In this experiment we show how our approach relates to
approaches that rely on a static map of the environment
and discard observations of dynamic objects for local-
ization (Fox et al., 1999; Schulz et al., 2003; Wolf and
Sukhatme, 2005; Wang et al., 2007). Four approaches have
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Fig. 10. Comparison between using the ground-truth map (top), the proposed approach (middle) and MCL (bottom) in a global local-
ization setting. The MCL converges too fast and to a wrong position (frame 8), while the proposed approach needs more time to better
estimate the current configuration (frame 12). The last frame shows the updated map with the current configuration, notice how it
resemble the ground-truth map for the explored portion.

been compared. The first two approaches, “Static + Rejec-
tion” and “Static + Robust”, use MCL on a static map of
the environment estimated when the parking lot was empty
(Figure 11). The difference between them is that Static +
Rejection only uses measurements of static objects to local-
ize and Static + Robust uses the Blake–Zisserman robust
function instead. The last two approaches correspond to
MCL-S and our approach (RBPF-HMM) from the previous
experiment.

We used the same settings of the position tracking exper-
iment, i.e. we performed 100 runs for each data set, where
we randomly sampled the initial pose of the robot. All the
approaches use the same random seed, have been initial-
ized with 500 particles and an occupancy threshold of 0.6.
The particles are initially sampled from a Gaussian distribu-
tion centered at the ground-truth position of the robot and
with covariance 	 = diag( 1, 1, 0.5). We let the filter track
the position for 100 steps and then compute the mean error
with respect to the ground-truth. If this error is below 1 m
and 0.5 rad we consider the run a success, otherwise it is a
failure.

Figure 12 depicts the results of the experiment. As in the
position tracking experiment, the figure shows the failure
rate, i.e. the percentage of time the robot got lost during
tracking. From the plot and the static map, we can see two
clear messages. The first message is that outlier rejection
mechanism are more sensitive to changes in the environ-
ment when no static part of the environment is visible.
This is clear if one compares the performances of Static +
Rejection with Static + Robust.

The second message is that the static portion of the
environment does not contain enough information for the
robot to localize itself and observations of low dynamic
objects improve localization. This is visible in the plot:
our approach (RBPF-HMM) has a better performance than
MCL-S, which in turn has a better performance than Static
+ Robust. All the approaches use the same likelihood func-
tion and the same algorithm, the only difference is the
amount of information stored in the map with respect to
objects with low dynamics. For the static map case, no
information about the low dynamic objects is present. In
the MCL-S case, objects that have been observed most of
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Fig. 11. Static map computed when the parking lot was empty.

Fig. 12. Failure rate for the outlier rejection experiment. The
graph shows the failure rate of the different algorithms. The figure
clearly show that outlier rejection mechanisms are more sensitive
to changing environments than the robust likelihood function. It
also show our approach outperforms techniques based on outlier
rejections.

the time are present in the map, due to the occupancy grid
update rule. In our approach, the dynamics of those objects
are explicitly modeled in the dynamic occupancy grids.
This allows us to infer how often we expect to see a low
dynamic object in the environment and for how long.

6.4. Comparison with lifelong mapping using
experiences

The aim of this experiment is to compare the performance
of our approach with the experience map of Churchill and
Newman (2012), a state-of-the-art method for lifelong map-
ping. In the experience map approach, the environment is
represented by a set of experiences, where each experience
is a sequence of observations connected by visual odometry.

Fig. 13. Results for the lifelong mapping experiment using the
generous thresholds (top) and the more restrictive ones (bottom).
The plots show the normalized odometry output added to the map
for the approach of Churchill and Newman (2012), which is equiv-
alent of the failure rate of the position tracking. For the sake of
comparison we also plot the performances of our approach. The
plot shows that our approach has a better performance even in the
case when a single experience is needed for localization.

During operation, each experience is equipped with a local-
izer whose task is to track the position of the robot in the
experience, or declare it “lost” in case of tracking failure.
When the system is not able to localize the robot in at least
N experiences, the current observation sequence becomes
a new experience and is inserted in the map. The approach
relies on two main components: the ability to “close a loop”,
i.e. to globally localize the robot, and the ability to navi-
gate locally, i.e. the ability to track the position of the robot.
We use the ground-truth position to initialize the localiz-
ers of every experience and the MCL algorithm to track the
position, since they both work reliably in the case where no
changes are present in environment.

For each data set, we consider all other datasets as previ-
ous experiences and performed the same 100 runs that were
used in the position tracking experiment. For each run, all
the localizers for every other experience are initialized with
a Gaussian distribution centered at the ground-truth posi-
tion of the robot and with covariance 	 = diag( 1, 1, 0.5).
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We track the position for 100 steps and check how many
times the localizers declared the robot as “lost”. For a fair
comparison, we used the same thresholds of 1 m and 0.5 rad
to check the success of position tracking. To give a bet-
ter picture about the performances of the two approaches,
we also perform an additional experiment using tighter
thresholds: 0.2 m and 0.1 rad.

Figure 13 shows the normalized odometry output added
to the map for different values of N , the minimum number
of successful localizers. Note that this number is equivalent
to the failure rate of the system to localize the robot, since
new experiences are added in case of localization failures.
For the sake of comparison, we also included the failure rate
of our approach in the same settings. Note that we used on
purpose the same runs and the same algorithm for position
tracking to have a fair comparison. We also used the same
amount of information about the environment, i.e. all the
datasets/experiences not used for the testing run. The only
difference in the two approaches is the environment rep-
resentation and the way inference over the environment is
performed.

The plot shows that our approach has the best perfor-
mance, with the experience map relying only on a single
localizer having a similar performance. Increasing the num-
ber of required localizers, drastically decreases the perfor-
mance of the system. We believe this is due to the local
nature of the changes in the parking lot. Note that the same
phenomena have been reported in the original paper, where
the car park was in one of the regions with high variation. If
we analyze the bottom plot with the tighter thresholds, we
see that the gap in performances between our approach and
the experience map increases. We believe this is due to the
fact that the stored maps do not fully represent the current
configuration of the environment, resulting in higher error
in localization. Our approach, instead, is able to general-
ize better to unseen environments and can still achieve high
localization accuracy.

The computational complexity of the experience map is
much higher than in our approach. We only require one
localizer and the local update of the map, where the experi-
ence map requires one localizer for each experience. Hence,
our approach scales with the environment size while their
approach scales with the environment size and the number
of different configurations.

The experiment also provides an indirect comparison
with the approach of Stachniss and Burgard (2005), since
it is a special case of the experience map, in which a par-
ticle filter is used as localizer and only one experience is
needed for localization.

7. Conclusions

In this paper, we presented a probabilistic localization
framework for robots operating in dynamic environments.
Our approach recursively estimates not only the pose of
the robot, but also the state of the environment. It employs
a hidden Markov model to represent the dynamics of the

environment and a RBPF to efficiently estimate the joint
state. In addition, it exploits the properties of Markov chains
to reduce the memory requirements so that the algorithm
can be run online on a real robot. Our approach has two
advantages. First, it allows for accurate and robust localiza-
tion even in changing environments and, second, it provides
up-to-date maps of them. We evaluated our algorithm exten-
sively using real-world data. The results demonstrate that
our model substantially outperforms the popular Monte-
Carlo localization algorithm. This makes our method more
suitable for long-term operation of mobile robots in chang-
ing environments.

In future, we would like to extend our model to rea-
son about objects and not only about individual cells. We
will furthermore investigate alternative models to encode
the changes (e.g. Dynamic Bayesian Networks and second
order hidden Markov models). This will provide a novel
perspective on how to reason about correlations in a grid
map. In addition, we plan to look further into the detection
of moving object and motion segmentation.

We also plan on releasing the software package imple-
menting the approach described in this article as open
source software and on making the datasets used available
at publication time.
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